# 一.简单介绍
# 1.B-树历史
B 树(B-Tree)结构是一种高效存储和查询数据的方法,它的历史可以追溯到 1970 年代早期。B 树的发明人 Rudolf Bayer 和 Edward M. McCreight 分别发表了一篇论文介绍了 B 树。这篇论文是 1972 年发表于《ACM Transactions on Database Systems》中的,题目为"Organization and Maintenance of Large Ordered Indexes"。
这篇论文提出了一种能够高效地维护大型有序索引的方法,这种方法的主要思想是将每个节点扩展成多个子节点,以减少查找所需的次数。B 树结构非常适合应用于磁盘等大型存储器的高效操作,被广泛应用于关系数据库和文件系统中。
B 树结构有很多变种和升级版,例如 B+树,B*树和 SB 树等。这些变种和升级版本都基于 B 树的核心思想,通过调整 B 树的参数和结构,提高了 B 树在不同场景下的性能表现。
总的来说,B 树结构是一个非常重要的数据结构,为高效存储和查询大量数据提供了可靠的方法。它的历史可以追溯到上个世纪 70 年代,而且在今天仍然被广泛应用于各种场景。
# 2.B 的含义
B-树的名称是由其发明者 Rudolf Bayer 提出的。Bayer 和 McCreight 从未解释 B 代表什么,人们提出了许多可能的解释,比如 Boeing、balanced、between、broad、bushy 和 Bayer 等。但 McCreight 表示,越是思考 B-trees 中的 B 代表什么,就越能更好地理解 B-trees
# 3.特性
一棵 B-树具有以下性质
特性 1:每个节点 x 具有
- 属性 n,表示节点 x 中 key 的个数
- 属性 leaf,表示节点是否是叶子节点
- 节点 key 可以有多个,以升序存储
特性 2:每个非叶子节点中的孩子数是 n + 1、叶子节点没有孩子
特性 3:最小度数 t(节点的孩子数称为度)和节点中键数量的关系如下:
最小度数 t | 键数量范围 |
---|---|
2 | 1 ~ 3 |
3 | 2 ~ 5 |
4 | 3 ~ 7 |
... | ... |
n | (n-1) ~ (2n-1) |
其中,当节点中键数量达到其最大值时,即 3、5、7 ... 2n-1,需要分裂
特性 4:叶子节点的深度都相同
问:
B-树为什么有最小度数的限制?
答:
B 树中有最小度数的限制是为了保证 B 树的平衡特性。
在 B 树中,每个节点都可以有多个子节点,这使得 B 树可以存储大量的键值,但也带来了一些问题。如果节点的子节点数量太少,那么就可能导致 B 树的高度过高,从而降低了 B 树的效率。此外,如果节点的子节点数量太多,那么就可能导致节点的搜索、插入和删除操作变得复杂和低效。
最小度数的限制通过限制节点的子节点数量,来平衡这些问题。在 B 树中,每个节点的子节点数量都必须在一定的范围内,即 t 到 2t 之间(其中 t 为最小度数)
# 4.AVL 树高?
100 万的数据使用 avl 树来存储,树高是多少?
AVL 树是一种自平衡二叉搜索树,它的树高(或称为高度)受到节点插入和删除操作的影响,保持在 O(log n) 的水平。在这里,"n" 表示树中节点的数量。
如果你有 100 万个数据要存储在 AVL 树中,树的高度应该接近于 log2(1000000)。计算一下:
log2(1000000) ≈ 19.93
所以,树的高度大约为 20 层(向上取整)。这意味着在 AVL 树中查找、插入和删除操作的时间复杂度通常都在 O(log n) 的范围内,其中 n 是树中的节点数。因此,AVL 树在维护平衡方面非常高效,适合用于需要高效查找和插入的数据结构。
# 5.B 树树高?
100 万的数据,如果存储到 B-树(最小度数是 500),那么树高大约是多少?
B-树的高度与其最小度数以及存储的关键字数量有关。最小度数表示每个节点最少有多少个子节点。在一个典型的 B-树中,树的高度通常较低,因为它能够容纳更多的关键字在每个节点中。
如果你有 100 万个数据要存储在一个 B-树中,而该 B-树的最小度数为 500,那么我们可以计算大致的树高:
首先,根节点至少包含一个子节点和两个关键字(除非它是叶子节点),然后每个内部节点至少包含 500 个子节点和 501 个关键字。我们可以使用以下方式计算树的高度:
树的高度 = log_500(1000000)
使用换底公式,我们可以将其转换为常用的对数底数,如自然对数或以 2 为底的对数。在这里,我们使用以 2 为底的对数:
树的高度 ≈ log2(1000000) / log2(500)
计算一下:
树的高度 ≈ 19.93 / 8.97 ≈ 2.22
所以,如果将 100 万个数据存储在一个 B-树中,而最小度数为 500,那么树的高度大约是 2.22,但由于树的高度是整数,所以实际树的高度将会是 3。这意味着 B-树的高度较低,使得查找和插入等操作非常高效,适合用于大规模数据的存储和检索。
# 二.常见方法
# 1.定义节点
static class Node {
boolean leaf = true;
int keyNumber;
int t;
int[] keys;
Node[] children;
public Node(int t) {
this.t = t;
this.keys = new int[2 * t - 1];
this.children = new Node[2 * t];
}
@Override
public String toString() {
return Arrays.toString(Arrays.copyOfRange(keys, 0, keyNumber));
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
- leaf 表示是否为叶子节点
- keyNumber 为 keys 中有效 key 数目
- t 为最小度数,它决定了节点中 key 的最小、最大数目,分别是 t-1 和 2t-1
- keys 存储此节点的 key
- children 存储此节点的 child
- toString 只是为了方便调试和测试,非必须
实际 keys 应当改为 entries 以便同时保存 key 和 value,刚开始简化实现
# 2.多路查找
为上面节点类添加 get 方法
Node get(int key) {
int i = 0;
while (i < keyNumber && keys[i] < key) {
i++;
}
if (i < keyNumber && keys[i] == key) {
return this;
}
if (leaf) {
return null;
}
return children[i].get(key);
}
2
3
4
5
6
7
8
9
10
11
12
13
# 3.插入 key 和 child
为上面节点类添加 insertKey 和 insertChild 方法
void insertKey(int key, int index) {
System.arraycopy(keys, index, keys, index + 1, keyNumber - index);
keys[index] = key;
keyNumber++;
}
void insertChild(Node child, int index) {
System.arraycopy(children, index, children, index + 1, keyNumber - index);
children[index] = child;
}
2
3
4
5
6
7
8
9
10
作用是向 keys 数组或 children 数组指定 index 处插入新数据,注意
- 由于使用了静态数组,并且不会在新增或删除时改变它的大小,因此需要额外的 keyNumber 来指定数组内有效 key 的数目
- 插入时 keyNumber++
- 删除时减少 keyNumber 的值即可
- children 不会单独维护数目,它比 keys 多一个
- 如果这两个方法同时调用,注意它们的先后顺序,insertChild 后调用,因为它计算复制元素个数时用到了 keyNumber
# 4.定义树
public class BTree {
final int t;
final int MIN_KEY_NUMBER;
final int MAX_KEY_NUMBER;
Node root;
public BTree() {
this(2);
}
public BTree(int t) {
this.t = t;
MIN_KEY_NUMBER = t - 1;
MAX_KEY_NUMBER = 2 * t - 1;
root = new Node(t);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 5.插入
public void put(int key) {
doPut(null, 0, root, key);
}
private void doPut(Node parent, int index, Node node, int key) {
int i = 0;
while (i < node.keyNumber && node.keys[i] < key) {
i++;
}
if (i < node.keyNumber && node.keys[i] == key) {
return;
}
if (node.leaf) {
node.insertKey(key, i);
} else {
doPut(node, i, node.children[i], key);
}
if (isFull(node)) {
split(parent, index, node);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
- 首先查找本节点中的插入位置 i,如果没有空位(key 被找到),应该走更新的逻辑,目前什么没做
- 接下来分两种情况
- 如果节点是叶子节点,可以直接插入了
- 如果节点是非叶子节点,需要继续在 children[i] 处继续递归插入
- 无论哪种情况,插入完成后都可能超过节点 keys 数目限制,此时应当执行节点分裂
- 参数中的 parent 和 index 都是给分裂方法用的,代表当前节点父节点,和分裂节点是第几个孩子
判断依据为:
boolean isFull(Node node) {
return node.keyNumber == MAX_KEY_NUMBER;
}
2
3
# 三.核心方法
# 1.分裂
void split(Node parent, int index , Node left) {
if (parent == null) {
Node newRoot = new Node(this.t);
newRoot.leaf = false;
newRoot.insertChild(root, 0);
root = newRoot;
parent = newRoot;
}
Node right = new Node(this.t);
right.leaf = left.leaf;
right.keyNumber = t - 1;
System.arraycopy(left.keys, t, right.keys, 0, t - 1);
if (!left.leaf) {
System.arraycopy(left.children, t, right.children, 0, t);
}
left.keyNumber = t - 1;
int mid = left.keys[t - 1];
parent.insertKey(mid, index);
parent.insertChild(right, index + 1);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
分两种情况:
- 如果 parent == null 表示要分裂的是根节点,此时需要创建新根,原来的根节点作为新根的 0 孩子
- 否则
- 创建 right 节点(分裂后大于当前 left 节点的),把 t 以后的 key 和 child 都拷贝过去
- t-1 处的 key 插入到 parent 的 index 处,index 指 left 作为孩子时的索引
- right 节点作为 parent 的孩子插入到 index + 1 处
# 2.删除
case 1:当前节点是叶子节点,没找到
case 2:当前节点是叶子节点,找到了
case 3:当前节点是非叶子节点,没找到
case 4:当前节点是非叶子节点,找到了
case 5:删除后 key 数目 < 下限(不平衡)
case 6:根节点
# 3.完整代码
package com.itheima.algorithm.btree;
import java.util.Arrays;
/**
* <h3>B-树</h3>
*/
@SuppressWarnings("all")
public class BTree {
static class Node {
int[] keys; // 关键字
Node[] children; // 孩子
int keyNumber; // 有效关键字数目
boolean leaf = true; // 是否是叶子节点
int t; // 最小度数 (最小孩子数)
public Node(int t) { // t>=2
this.t = t;
this.children = new Node[2 * t];
this.keys = new int[2 * t - 1];
}
public Node(int[] keys) {
this.keys = keys;
}
@Override
public String toString() {
return Arrays.toString(Arrays.copyOfRange(keys, 0, keyNumber));
}
// 多路查找
Node get(int key) {
int i = 0;
while (i < keyNumber) {
if (keys[i] == key) {
return this;
}
if (keys[i] > key) {
break;
}
i++;
}
// 执行到此时 keys[i]>key 或 i==keyNumber
if (leaf) {
return null;
}
// 非叶子情况
return children[i].get(key);
}
// 向 keys 指定索引处插入 key
void insertKey(int key, int index) {
System.arraycopy(keys, index, keys, index + 1, keyNumber - index);
keys[index] = key;
keyNumber++;
}
// 向 children 指定索引处插入 child
void insertChild(Node child, int index) {
System.arraycopy(children, index, children, index + 1, keyNumber - index);
children[index] = child;
}
int removeKey(int index) {
int t = keys[index];
System.arraycopy(keys, index + 1, keys, index, --keyNumber - index);
return t;
}
int removeLeftmostKey() {
return removeKey(0);
}
int removeRightmostKey() {
return removeKey(keyNumber - 1);
}
Node removeChild(int index) {
Node t = children[index];
System.arraycopy(children, index + 1, children, index, keyNumber - index);
children[keyNumber] = null;
return t;
}
Node removeLeftmostChild() {
return removeChild(0);
}
Node removeRightmostChild() {
return removeChild(keyNumber);
}
void moveToLeft(Node left) {
int start = left.keyNumber;
if (!leaf) {
for (int i = 0; i <= keyNumber; i++) {
left.children[start + i] = children[i];
}
}
for (int i = 0; i < keyNumber; i++) {
left.keys[left.keyNumber++] = keys[i];
}
}
Node leftSibling(int index) {
return index > 0 ? children[index - 1] : null;
}
Node rightSibling(int index) {
return index == keyNumber ? null : children[index + 1];
}
}
Node root;
int t; // 树中节点最小度数
final int MIN_KEY_NUMBER; // 最小key数目
final int MAX_KEY_NUMBER; // 最大key数目
public BTree() {
this(2);
}
public BTree(int t) {
this.t = t;
root = new Node(t);
MAX_KEY_NUMBER = 2 * t - 1;
MIN_KEY_NUMBER = t - 1;
}
// 1. 是否存在
public boolean contains(int key) {
return root.get(key) != null;
}
// 2. 新增
public void put(int key) {
doPut(root, key, null, 0);
}
private void doPut(Node node, int key, Node parent, int index) {
int i = 0;
while (i < node.keyNumber) {
if (node.keys[i] == key) {
return; // 更新
}
if (node.keys[i] > key) {
break; // 找到了插入位置,即为此时的 i
}
i++;
}
if (node.leaf) {
node.insertKey(key, i);
} else {
doPut(node.children[i], key, node, i);
}
if (node.keyNumber == MAX_KEY_NUMBER) {
split(node, parent, index);
}
}
/**
* <h3>分裂方法</h3>
*
* @param left 要分裂的节点
* @param parent 分裂节点的父节点
* @param index 分裂节点是第几个孩子
*/
void split(Node left, Node parent, int index) {
// 分裂的是根节点
if (parent == null) {
Node newRoot = new Node(t);
newRoot.leaf = false;
newRoot.insertChild(left, 0);
this.root = newRoot;
parent = newRoot;
}
// 1. 创建 right 节点,把 left 中 t 之后的 key 和 child 移动过去
Node right = new Node(t);
right.leaf = left.leaf;
System.arraycopy(left.keys, t, right.keys, 0, t - 1);
// 分裂节点是非叶子的情况
if (!left.leaf) {
System.arraycopy(left.children, t, right.children, 0, t);
for (int i = t; i <= left.keyNumber; i++) {
left.children[i] = null;
}
}
right.keyNumber = t - 1;
left.keyNumber = t - 1;
// 2. 中间的 key (t-1 处)插入到父节点
int mid = left.keys[t - 1];
parent.insertKey(mid, index);
// 3. right 节点作为父节点的孩子
parent.insertChild(right, index + 1);
}
// 3. 删除
public void remove(int key) {
doRemove(root, key, null, 0);
}
private void doRemove(Node node, int key, Node parent, int index) {
int i = 0;
while (i < node.keyNumber) {
if (node.keys[i] >= key) {
break;
}
i++;
}
if (node.leaf) {
if (notFound(node, key, i)) { // case 1
return;
}
node.removeKey(i); // case 2
} else {
if (notFound(node, key, i)) { // case 3
doRemove(node.children[i], key, node, i);
} else { // case 4
Node s = node.children[i + 1];
while (!s.leaf) {
s = s.children[0];
}
int k = s.keys[0];
node.keys[i] = k;
doRemove(node.children[i + 1], k, node, i + 1);
}
}
if (node.keyNumber < MIN_KEY_NUMBER) { // case 5
balance(node, parent, index);
}
}
private boolean notFound(Node node, int key, int i) {
return i >= node.keyNumber || (i < node.keyNumber && node.keys[i] != key);
}
private void balance(Node node, Node parent, int i) {
if (node == root) {
if (root.keyNumber == 0 && root.children[0] != null) {
root = root.children[0];
}
return;
}
Node leftSibling = parent.leftSibling(i);
Node rightSibling = parent.rightSibling(i);
if (leftSibling != null && leftSibling.keyNumber > MIN_KEY_NUMBER) {
rightRotate(node, leftSibling, parent, i);
return;
}
if (rightSibling != null && rightSibling.keyNumber > MIN_KEY_NUMBER) {
leftRotate(node, rightSibling, parent, i);
return;
}
if (leftSibling != null) {
mergeToLeft(leftSibling, parent, i - 1);
} else {
mergeToLeft(node, parent, i);
}
}
private void mergeToLeft(Node left, Node parent, int i) {
Node right = parent.removeChild(i + 1);
left.insertKey(parent.removeKey(i), left.keyNumber);
right.moveToLeft(left);
}
private void rightRotate(Node node, Node leftSibling, Node parent, int i) {
node.insertKey(parent.keys[i - 1], 0);
if (!leftSibling.leaf) {
node.insertChild(leftSibling.removeRightmostChild(), 0);
}
parent.keys[i - 1] = leftSibling.removeRightmostKey();
}
private void leftRotate(Node node, Node rightSibling, Node parent, int i) {
node.insertKey(parent.keys[i], node.keyNumber);
if (!rightSibling.leaf) {
node.insertChild(rightSibling.removeLeftmostChild(), node.keyNumber + 1);
}
parent.keys[i] = rightSibling.removeLeftmostKey();
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# 4.B-树与 2-3 树、2-3-4 树的关系
可以这样总结它们之间的关系:
- 2-3 树是最小度数为 2 的 B 树,其中每个节点可以包含 2 个或 3 个子节点。
- 2-3-4 树是最小度数为 2 的 B 树的一种特殊情况,其中每个节点可以包含 2 个、3 个或 4 个子节点。
- B 树是一种更加一般化的平衡树,可以适应不同的应用场景,其节点可以包含任意数量的键值,节点的度数取决于最小度数 t 的设定。
# 四.B+树
package com.kwan.shuyu.datastructure.btree;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
/**
* B+树
*
* @author : qinyingjie
* @version : 2.2.0
* @date : 2023/9/19 09:52
*/
public class BPlusTree {
int m;
InternalNode root;
LeafNode firstLeaf;
/*~~~~~~~~~~~~~~~~ HELPER FUNCTIONS ~~~~~~~~~~~~~~~~*/
/**
* This method performs a standard binary search on a sorted
* DictionaryPair[] and returns the index of the dictionary pair
* with target key t if found. Otherwise, this method returns a negative
* value.
*
* @param dps: list of dictionary pairs sorted by key within leaf node
* @param t: target key value of dictionary pair being searched for
* @return index of the target value if found, else a negative value
*/
private int binarySearch(DictionaryPair[] dps, int numPairs, int t) {
Comparator<DictionaryPair> c = (o1, o2) -> {
Integer a = o1.key;
Integer b = o2.key;
return a.compareTo(b);
};
return Arrays.binarySearch(dps, 0, numPairs, new DictionaryPair(t, 0), c);
}
/**
* This method starts at the root of the B+ tree and traverses down the
* tree via key comparisons to the corresponding leaf node that holds 'key'
* within its dictionary.
*
* @param key: the unique key that lies within the dictionary of a LeafNode object
* @return the LeafNode object that contains the key within its dictionary
*/
private LeafNode findLeafNode(int key) {
// Initialize keys and index variable
Integer[] keys = this.root.keys;
int i;
// Find next node on path to appropriate leaf node
for (i = 0; i < this.root.degree - 1; i++) {
if (key < keys[i]) {
break;
}
}
/* Return node if it is a LeafNode object,
otherwise repeat the search function a level down */
Node child = this.root.childPointers[i];
if (child instanceof LeafNode) {
return (LeafNode) child;
} else {
return findLeafNode((InternalNode) child, key);
}
}
private LeafNode findLeafNode(InternalNode node, int key) {
// Initialize keys and index variable
Integer[] keys = node.keys;
int i;
// Find next node on path to appropriate leaf node
for (i = 0; i < node.degree - 1; i++) {
if (key < keys[i]) {
break;
}
}
/* Return node if it is a LeafNode object,
otherwise repeat the search function a level down */
Node childNode = node.childPointers[i];
if (childNode instanceof LeafNode) {
return (LeafNode) childNode;
} else {
return findLeafNode((InternalNode) node.childPointers[i], key);
}
}
/**
* Given a list of pointers to Node objects, this method returns the index of
* the pointer that points to the specified 'node' LeafNode object.
*
* @param pointers: a list of pointers to Node objects
* @param node: a specific pointer to a LeafNode
* @return (int) index of pointer in list of pointers
*/
private int findIndexOfPointer(Node[] pointers, LeafNode node) {
int i;
for (i = 0; i < pointers.length; i++) {
if (pointers[i] == node) {
break;
}
}
return i;
}
/**
* This is a simple method that returns the midpoint (or lower bound
* depending on the context of the method invocation) of the max degree m of
* the B+ tree.
*
* @return (int) midpoint/lower bound
*/
private int getMidpoint() {
return (int) Math.ceil((this.m + 1) / 2.0) - 1;
}
/**
* Given a deficient InternalNode in, this method remedies the deficiency
* through borrowing and merging.
*
* @param in: a deficient InternalNode
*/
private void handleDeficiency(InternalNode in) {
InternalNode sibling;
InternalNode parent = in.parent;
// Remedy deficient root node
if (this.root == in) {
for (int i = 0; i < in.childPointers.length; i++) {
if (in.childPointers[i] != null) {
if (in.childPointers[i] instanceof InternalNode) {
this.root = (InternalNode) in.childPointers[i];
this.root.parent = null;
} else if (in.childPointers[i] instanceof LeafNode) {
this.root = null;
}
}
}
}
// Borrow:
else if (in.leftSibling != null && in.leftSibling.isLendable()) {
sibling = in.leftSibling;
} else if (in.rightSibling != null && in.rightSibling.isLendable()) {
sibling = in.rightSibling;
// Copy 1 key and pointer from sibling (atm just 1 key)
int borrowedKey = sibling.keys[0];
Node pointer = sibling.childPointers[0];
// Copy root key and pointer into parent
in.keys[in.degree - 1] = parent.keys[0];
in.childPointers[in.degree] = pointer;
// Copy borrowedKey into root
parent.keys[0] = borrowedKey;
// Delete key and pointer from sibling
sibling.removePointer(0);
Arrays.sort(sibling.keys);
sibling.removePointer(0);
shiftDown(in.childPointers, 1);
}
// Merge:
else if (in.leftSibling != null && in.leftSibling.isMergeable()) {
} else if (in.rightSibling != null && in.rightSibling.isMergeable()) {
sibling = in.rightSibling;
// Copy rightmost key in parent to beginning of sibling's keys &
// delete key from parent
sibling.keys[sibling.degree - 1] = parent.keys[parent.degree - 2];
Arrays.sort(sibling.keys, 0, sibling.degree);
parent.keys[parent.degree - 2] = null;
// Copy in's child pointer over to sibling's list of child pointers
for (int i = 0; i < in.childPointers.length; i++) {
if (in.childPointers[i] != null) {
sibling.prependChildPointer(in.childPointers[i]);
in.childPointers[i].parent = sibling;
in.removePointer(i);
}
}
// Delete child pointer from grandparent to deficient node
parent.removePointer(in);
// Remove left sibling
sibling.leftSibling = in.leftSibling;
}
// Handle deficiency a level up if it exists
if (parent != null && parent.isDeficient()) {
handleDeficiency(parent);
}
}
/**
* This is a simple method that determines if the B+ tree is empty or not.
*
* @return a boolean indicating if the B+ tree is empty or not
*/
private boolean isEmpty() {
return firstLeaf == null;
}
/**
* This method performs a standard linear search on a sorted
* DictionaryPair[] and returns the index of the first null entry found.
* Otherwise, this method returns a -1. This method is primarily used in
* place of binarySearch() when the target t = null.
*
* @param dps: list of dictionary pairs sorted by key within leaf node
* @return index of the target value if found, else -1
*/
private int linearNullSearch(DictionaryPair[] dps) {
for (int i = 0; i < dps.length; i++) {
if (dps[i] == null) {
return i;
}
}
return -1;
}
/**
* This method performs a standard linear search on a list of Node[] pointers
* and returns the index of the first null entry found. Otherwise, this
* method returns a -1. This method is primarily used in place of
* binarySearch() when the target t = null.
*
* @param pointers: list of Node[] pointers
* @return index of the target value if found, else -1
*/
private int linearNullSearch(Node[] pointers) {
for (int i = 0; i < pointers.length; i++) {
if (pointers[i] == null) {
return i;
}
}
return -1;
}
/**
* This method is used to shift down a set of pointers that are prepended
* by null values.
*
* @param pointers: the list of pointers that are to be shifted
* @param amount: the amount by which the pointers are to be shifted
*/
private void shiftDown(Node[] pointers, int amount) {
Node[] newPointers = new Node[this.m + 1];
for (int i = amount; i < pointers.length; i++) {
newPointers[i - amount] = pointers[i];
}
pointers = newPointers;
}
/**
* This is a specialized sorting method used upon lists of DictionaryPairs
* that may contain interspersed null values.
*
* @param dictionary: a list of DictionaryPair objects
*/
private void sortDictionary(DictionaryPair[] dictionary) {
Arrays.sort(dictionary, new Comparator<DictionaryPair>() {
@Override
public int compare(DictionaryPair o1, DictionaryPair o2) {
if (o1 == null && o2 == null) {
return 0;
}
if (o1 == null) {
return 1;
}
if (o2 == null) {
return -1;
}
return o1.compareTo(o2);
}
});
}
/**
* This method modifies the InternalNode 'in' by removing all pointers within
* the childPointers after the specified split. The method returns the removed
* pointers in a list of their own to be used when constructing a new
* InternalNode sibling.
*
* @param in: an InternalNode whose childPointers will be split
* @param split: the index at which the split in the childPointers begins
* @return a Node[] of the removed pointers
*/
private Node[] splitChildPointers(InternalNode in, int split) {
Node[] pointers = in.childPointers;
Node[] halfPointers = new Node[this.m + 1];
// Copy half of the values into halfPointers while updating original keys
for (int i = split + 1; i < pointers.length; i++) {
halfPointers[i - split - 1] = pointers[i];
in.removePointer(i);
}
return halfPointers;
}
/**
* This method splits a single dictionary into two dictionaries where all
* dictionaries are of equal length, but each of the resulting dictionaries
* holds half of the original dictionary's non-null values. This method is
* primarily used when splitting a node within the B+ tree. The dictionary of
* the specified LeafNode is modified in place. The method returns the
* remainder of the DictionaryPairs that are no longer within ln's dictionary.
*
* @param ln: list of DictionaryPairs to be split
* @param split: the index at which the split occurs
* @return DictionaryPair[] of the two split dictionaries
*/
private DictionaryPair[] splitDictionary(LeafNode ln, int split) {
DictionaryPair[] dictionary = ln.dictionary;
/* Initialize two dictionaries that each hold half of the original
dictionary values */
DictionaryPair[] halfDict = new DictionaryPair[this.m];
// Copy half of the values into halfDict
for (int i = split; i < dictionary.length; i++) {
halfDict[i - split] = dictionary[i];
ln.delete(i);
}
return halfDict;
}
/**
* When an insertion into the B+ tree causes an overfull node, this method
* is called to remedy the issue, i.e. to split the overfull node. This method
* calls the sub-methods of splitKeys() and splitChildPointers() in order to
* split the overfull node.
*
* @param in: an overfull InternalNode that is to be split
*/
private void splitInternalNode(InternalNode in) {
// Acquire parent
InternalNode parent = in.parent;
// Split keys and pointers in half
int midpoint = getMidpoint();
int newParentKey = in.keys[midpoint];
Integer[] halfKeys = splitKeys(in.keys, midpoint);
Node[] halfPointers = splitChildPointers(in, midpoint);
// Change degree of original InternalNode in
in.degree = linearNullSearch(in.childPointers);
// Create new sibling internal node and add half of keys and pointers
InternalNode sibling = new InternalNode(this.m, halfKeys, halfPointers);
for (Node pointer : halfPointers) {
if (pointer != null) {
pointer.parent = sibling;
}
}
// Make internal nodes siblings of one another
sibling.rightSibling = in.rightSibling;
if (sibling.rightSibling != null) {
sibling.rightSibling.leftSibling = sibling;
}
in.rightSibling = sibling;
sibling.leftSibling = in;
if (parent == null) {
// Create new root node and add midpoint key and pointers
Integer[] keys = new Integer[this.m];
keys[0] = newParentKey;
InternalNode newRoot = new InternalNode(this.m, keys);
newRoot.appendChildPointer(in);
newRoot.appendChildPointer(sibling);
this.root = newRoot;
// Add pointers from children to parent
in.parent = newRoot;
sibling.parent = newRoot;
} else {
// Add key to parent
parent.keys[parent.degree - 1] = newParentKey;
Arrays.sort(parent.keys, 0, parent.degree);
// Set up pointer to new sibling
int pointerIndex = parent.findIndexOfPointer(in) + 1;
parent.insertChildPointer(sibling, pointerIndex);
sibling.parent = parent;
}
}
/**
* This method modifies a list of Integer-typed objects that represent keys
* by removing half of the keys and returning them in a separate Integer[].
* This method is used when splitting an InternalNode object.
*
* @param keys: a list of Integer objects
* @param split: the index where the split is to occur
* @return Integer[] of removed keys
*/
private Integer[] splitKeys(Integer[] keys, int split) {
Integer[] halfKeys = new Integer[this.m];
// Remove split-indexed value from keys
keys[split] = null;
// Copy half of the values into halfKeys while updating original keys
for (int i = split + 1; i < keys.length; i++) {
halfKeys[i - split - 1] = keys[i];
keys[i] = null;
}
return halfKeys;
}
/*~~~~~~~~~~~~~~~~ API: DELETE, INSERT, SEARCH ~~~~~~~~~~~~~~~~*/
/**
* Given a key, this method will remove the dictionary pair with the
* corresponding key from the B+ tree.
*
* @param key: an integer key that corresponds with an existing dictionary
* pair
*/
public void delete(int key) {
if (isEmpty()) {
/* Flow of execution goes here when B+ tree has no dictionary pairs */
System.err.println("Invalid Delete: The B+ tree is currently empty.");
} else {
// Get leaf node and attempt to find index of key to delete
LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key);
int dpIndex = binarySearch(ln.dictionary, ln.numPairs, key);
if (dpIndex < 0) {
/* Flow of execution goes here when key is absent in B+ tree */
System.err.println("Invalid Delete: Key unable to be found.");
} else {
// Successfully delete the dictionary pair
ln.delete(dpIndex);
// Check for deficiencies
if (ln.isDeficient()) {
LeafNode sibling;
InternalNode parent = ln.parent;
// Borrow: First, check the left sibling, then the right sibling
if (ln.leftSibling != null &&
ln.leftSibling.parent == ln.parent &&
ln.leftSibling.isLendable()) {
sibling = ln.leftSibling;
DictionaryPair borrowedDP = sibling.dictionary[sibling.numPairs - 1];
/* Insert borrowed dictionary pair, sort dictionary,
and delete dictionary pair from sibling */
ln.insert(borrowedDP);
sortDictionary(ln.dictionary);
sibling.delete(sibling.numPairs - 1);
// Update key in parent if necessary
int pointerIndex = findIndexOfPointer(parent.childPointers, ln);
if (!(borrowedDP.key >= parent.keys[pointerIndex - 1])) {
parent.keys[pointerIndex - 1] = ln.dictionary[0].key;
}
} else if (ln.rightSibling != null &&
ln.rightSibling.parent == ln.parent &&
ln.rightSibling.isLendable()) {
sibling = ln.rightSibling;
DictionaryPair borrowedDP = sibling.dictionary[0];
/* Insert borrowed dictionary pair, sort dictionary,
and delete dictionary pair from sibling */
ln.insert(borrowedDP);
sibling.delete(0);
sortDictionary(sibling.dictionary);
// Update key in parent if necessary
int pointerIndex = findIndexOfPointer(parent.childPointers, ln);
if (!(borrowedDP.key < parent.keys[pointerIndex])) {
parent.keys[pointerIndex] = sibling.dictionary[0].key;
}
}
// Merge: First, check the left sibling, then the right sibling
else if (ln.leftSibling != null &&
ln.leftSibling.parent == ln.parent &&
ln.leftSibling.isMergeable()) {
sibling = ln.leftSibling;
int pointerIndex = findIndexOfPointer(parent.childPointers, ln);
// Remove key and child pointer from parent
parent.removeKey(pointerIndex - 1);
parent.removePointer(ln);
// Update sibling pointer
sibling.rightSibling = ln.rightSibling;
// Check for deficiencies in parent
if (parent.isDeficient()) {
handleDeficiency(parent);
}
} else if (ln.rightSibling != null &&
ln.rightSibling.parent == ln.parent &&
ln.rightSibling.isMergeable()) {
sibling = ln.rightSibling;
int pointerIndex = findIndexOfPointer(parent.childPointers, ln);
// Remove key and child pointer from parent
parent.removeKey(pointerIndex);
parent.removePointer(pointerIndex);
// Update sibling pointer
sibling.leftSibling = ln.leftSibling;
if (sibling.leftSibling == null) {
firstLeaf = sibling;
}
if (parent.isDeficient()) {
handleDeficiency(parent);
}
}
} else if (this.root == null && this.firstLeaf.numPairs == 0) {
/* Flow of execution goes here when the deleted dictionary
pair was the only pair within the tree */
// Set first leaf as null to indicate B+ tree is empty
this.firstLeaf = null;
} else {
/* The dictionary of the LeafNode object may need to be
sorted after a successful delete */
sortDictionary(ln.dictionary);
}
}
}
}
/**
* Given an integer key and floating point value, this method inserts a
* dictionary pair accordingly into the B+ tree.
*
* @param key: an integer key to be used in the dictionary pair
* @param value: a floating point number to be used in the dictionary pair
*/
public void insert(int key, double value) {
if (isEmpty()) {
/* Flow of execution goes here only when first insert takes place */
// Create leaf node as first node in B plus tree (root is null)
LeafNode ln = new LeafNode(this.m, new DictionaryPair(key, value));
// Set as first leaf node (can be used later for in-order leaf traversal)
this.firstLeaf = ln;
} else {
// Find leaf node to insert into
LeafNode ln = (this.root == null) ? this.firstLeaf :
findLeafNode(key);
// Insert into leaf node fails if node becomes overfull
if (!ln.insert(new DictionaryPair(key, value))) {
// Sort all the dictionary pairs with the included pair to be inserted
ln.dictionary[ln.numPairs] = new DictionaryPair(key, value);
ln.numPairs++;
sortDictionary(ln.dictionary);
// Split the sorted pairs into two halves
int midpoint = getMidpoint();
DictionaryPair[] halfDict = splitDictionary(ln, midpoint);
if (ln.parent == null) {
/* Flow of execution goes here when there is 1 node in tree */
// Create internal node to serve as parent, use dictionary midpoint key
Integer[] parent_keys = new Integer[this.m];
parent_keys[0] = halfDict[0].key;
InternalNode parent = new InternalNode(this.m, parent_keys);
ln.parent = parent;
parent.appendChildPointer(ln);
} else {
/* Flow of execution goes here when parent exists */
// Add new key to parent for proper indexing
int newParentKey = halfDict[0].key;
ln.parent.keys[ln.parent.degree - 1] = newParentKey;
Arrays.sort(ln.parent.keys, 0, ln.parent.degree);
}
// Create new LeafNode that holds the other half
LeafNode newLeafNode = new LeafNode(this.m, halfDict, ln.parent);
// Update child pointers of parent node
int pointerIndex = ln.parent.findIndexOfPointer(ln) + 1;
ln.parent.insertChildPointer(newLeafNode, pointerIndex);
// Make leaf nodes siblings of one another
newLeafNode.rightSibling = ln.rightSibling;
if (newLeafNode.rightSibling != null) {
newLeafNode.rightSibling.leftSibling = newLeafNode;
}
ln.rightSibling = newLeafNode;
newLeafNode.leftSibling = ln;
if (this.root == null) {
// Set the root of B+ tree to be the parent
this.root = ln.parent;
} else {
/* If parent is overfull, repeat the process up the tree,
until no deficiencies are found */
InternalNode in = ln.parent;
while (in != null) {
if (in.isOverfull()) {
splitInternalNode(in);
} else {
break;
}
in = in.parent;
}
}
}
}
}
/**
* Given a key, this method returns the value associated with the key
* within a dictionary pair that exists inside the B+ tree.
*
* @param key: the key to be searched within the B+ tree
* @return the floating point value associated with the key within the B+ tree
*/
public Double search(int key) {
// If B+ tree is completely empty, simply return null
if (isEmpty()) {
return null;
}
// Find leaf node that holds the dictionary key
LeafNode ln = (this.root == null) ? this.firstLeaf : findLeafNode(key);
// Perform binary search to find index of key within dictionary
DictionaryPair[] dps = ln.dictionary;
int index = binarySearch(dps, ln.numPairs, key);
// If index negative, the key doesn't exist in B+ tree
if (index < 0) {
return null;
} else {
return dps[index].value;
}
}
/**
* This method traverses the doubly linked list of the B+ tree and records
* all values whose associated keys are within the range specified by
* lowerBound and upperBound.
*
* @param lowerBound: (int) the lower bound of the range
* @param upperBound: (int) the upper bound of the range
* @return an ArrayList<Double> that holds all values of dictionary pairs
* whose keys are within the specified range
*/
public ArrayList<Double> search(int lowerBound, int upperBound) {
// Instantiate Double array to hold values
ArrayList<Double> values = new ArrayList<Double>();
// Iterate through the doubly linked list of leaves
LeafNode currNode = this.firstLeaf;
while (currNode != null) {
// Iterate through the dictionary of each node
DictionaryPair[] dps = currNode.dictionary;
for (DictionaryPair dp : dps) {
/* Stop searching the dictionary once a null value is encountered
as this the indicates the end of non-null values */
if (dp == null) {
break;
}
// Include value if its key fits within the provided range
if (lowerBound <= dp.key && dp.key <= upperBound) {
values.add(dp.value);
}
}
/* Update the current node to be the right sibling,
leaf traversal is from left to right */
currNode = currNode.rightSibling;
}
return values;
}
/**
* Constructor
*
* @param m: the order (fanout) of the B+ tree
*/
public BPlusTree(int m) {
this.m = m;
this.root = null;
}
/**
* This class represents a general node within the B+ tree and serves as a
* superclass of InternalNode and LeafNode.
*/
public class Node {
InternalNode parent;
}
/**
* This class represents the internal nodes within the B+ tree that traffic
* all search/insert/delete operations. An internal node only holds keys; it
* does not hold dictionary pairs.
*/
private class InternalNode extends Node {
int maxDegree;
int minDegree;
int degree;
InternalNode leftSibling;
InternalNode rightSibling;
Integer[] keys;
Node[] childPointers;
/**
* This method appends 'pointer' to the end of the childPointers
* instance variable of the InternalNode object. The pointer can point to
* an InternalNode object or a LeafNode object since the formal
* parameter specifies a Node object.
*
* @param pointer: Node pointer that is to be appended to the
* childPointers list
*/
private void appendChildPointer(Node pointer) {
this.childPointers[degree] = pointer;
this.degree++;
}
/**
* Given a Node pointer, this method will return the index of where the
* pointer lies within the childPointers instance variable. If the pointer
* can't be found, the method returns -1.
*
* @param pointer: a Node pointer that may lie within the childPointers
* instance variable
* @return the index of 'pointer' within childPointers, or -1 if
* 'pointer' can't be found
*/
private int findIndexOfPointer(Node pointer) {
for (int i = 0; i < childPointers.length; i++) {
if (childPointers[i] == pointer) {
return i;
}
}
return -1;
}
/**
* Given a pointer to a Node object and an integer index, this method
* inserts the pointer at the specified index within the childPointers
* instance variable. As a result of the insert, some pointers may be
* shifted to the right of the index.
*
* @param pointer: the Node pointer to be inserted
* @param index: the index at which the insert is to take place
*/
private void insertChildPointer(Node pointer, int index) {
for (int i = degree - 1; i >= index; i--) {
childPointers[i + 1] = childPointers[i];
}
this.childPointers[index] = pointer;
this.degree++;
}
/**
* This simple method determines if the InternalNode is deficient or not.
* An InternalNode is deficient when its current degree of children falls
* below the allowed minimum.
*
* @return a boolean indicating whether the InternalNode is deficient
* or not
*/
private boolean isDeficient() {
return this.degree < this.minDegree;
}
/**
* This simple method determines if the InternalNode is capable of
* lending one of its dictionary pairs to a deficient node. An InternalNode
* can give away a dictionary pair if its current degree is above the
* specified minimum.
*
* @return a boolean indicating whether or not the InternalNode has
* enough dictionary pairs in order to give one away.
*/
private boolean isLendable() {
return this.degree > this.minDegree;
}
/**
* This simple method determines if the InternalNode is capable of being
* merged with. An InternalNode can be merged with if it has the minimum
* degree of children.
*
* @return a boolean indicating whether or not the InternalNode can be
* merged with
*/
private boolean isMergeable() {
return this.degree == this.minDegree;
}
/**
* This simple method determines if the InternalNode is considered overfull,
* i.e. the InternalNode object's current degree is one more than the
* specified maximum.
*
* @return a boolean indicating if the InternalNode is overfull
*/
private boolean isOverfull() {
return this.degree == maxDegree + 1;
}
/**
* Given a pointer to a Node object, this method inserts the pointer to
* the beginning of the childPointers instance variable.
*
* @param pointer: the Node object to be prepended within childPointers
*/
private void prependChildPointer(Node pointer) {
for (int i = degree - 1; i >= 0; i--) {
childPointers[i + 1] = childPointers[i];
}
this.childPointers[0] = pointer;
this.degree++;
}
/**
* This method sets keys[index] to null. This method is used within the
* parent of a merging, deficient LeafNode.
*
* @param index: the location within keys to be set to null
*/
private void removeKey(int index) {
this.keys[index] = null;
}
/**
* This method sets childPointers[index] to null and additionally
* decrements the current degree of the InternalNode.
*
* @param index: the location within childPointers to be set to null
*/
private void removePointer(int index) {
this.childPointers[index] = null;
this.degree--;
}
/**
* This method removes 'pointer' from the childPointers instance
* variable and decrements the current degree of the InternalNode. The
* index where the pointer node was assigned is set to null.
*
* @param pointer: the Node pointer to be removed from childPointers
*/
private void removePointer(Node pointer) {
for (int i = 0; i < childPointers.length; i++) {
if (childPointers[i] == pointer) {
this.childPointers[i] = null;
}
}
this.degree--;
}
/**
* Constructor
*
* @param m: the max degree of the InternalNode
* @param keys: the list of keys that InternalNode is initialized with
*/
private InternalNode(int m, Integer[] keys) {
this.maxDegree = m;
this.minDegree = (int) Math.ceil(m / 2.0);
this.degree = 0;
this.keys = keys;
this.childPointers = new Node[this.maxDegree + 1];
}
/**
* Constructor
*
* @param m: the max degree of the InternalNode
* @param keys: the list of keys that InternalNode is initialized with
* @param pointers: the list of pointers that InternalNode is initialized with
*/
private InternalNode(int m, Integer[] keys, Node[] pointers) {
this.maxDegree = m;
this.minDegree = (int) Math.ceil(m / 2.0);
this.degree = linearNullSearch(pointers);
this.keys = keys;
this.childPointers = pointers;
}
}
/**
* This class represents the leaf nodes within the B+ tree that hold
* dictionary pairs. The leaf node has no children. The leaf node has a
* minimum and maximum number of dictionary pairs it can hold, as specified
* by m, the max degree of the B+ tree. The leaf nodes form a doubly linked
* list that, i.e. each leaf node has a left and right sibling
*/
public class LeafNode extends Node {
int maxNumPairs;
int minNumPairs;
int numPairs;
LeafNode leftSibling;
LeafNode rightSibling;
DictionaryPair[] dictionary;
/**
* Given an index, this method sets the dictionary pair at that index
* within the dictionary to null.
*
* @param index: the location within the dictionary to be set to null
*/
public void delete(int index) {
// Delete dictionary pair from leaf
this.dictionary[index] = null;
// Decrement numPairs
numPairs--;
}
/**
* This method attempts to insert a dictionary pair within the dictionary
* of the LeafNode object. If it succeeds, numPairs increments, the
* dictionary is sorted, and the boolean true is returned. If the method
* fails, the boolean false is returned.
*
* @param dp: the dictionary pair to be inserted
* @return a boolean indicating whether or not the insert was successful
*/
public boolean insert(DictionaryPair dp) {
if (this.isFull()) {
/* Flow of execution goes here when numPairs == maxNumPairs */
return false;
} else {
// Insert dictionary pair, increment numPairs, sort dictionary
this.dictionary[numPairs] = dp;
numPairs++;
Arrays.sort(this.dictionary, 0, numPairs);
return true;
}
}
/**
* This simple method determines if the LeafNode is deficient, i.e.
* the numPairs within the LeafNode object is below minNumPairs.
*
* @return a boolean indicating whether or not the LeafNode is deficient
*/
public boolean isDeficient() {
return numPairs < minNumPairs;
}
/**
* This simple method determines if the LeafNode is full, i.e. the
* numPairs within the LeafNode is equal to the maximum number of pairs.
*
* @return a boolean indicating whether or not the LeafNode is full
*/
public boolean isFull() {
return numPairs == maxNumPairs;
}
/**
* This simple method determines if the LeafNode object is capable of
* lending a dictionary pair to a deficient leaf node. The LeafNode
* object can lend a dictionary pair if its numPairs is greater than
* the minimum number of pairs it can hold.
*
* @return a boolean indicating whether or not the LeafNode object can
* give a dictionary pair to a deficient leaf node
*/
public boolean isLendable() {
return numPairs > minNumPairs;
}
/**
* This simple method determines if the LeafNode object is capable of
* being merged with, which occurs when the number of pairs within the
* LeafNode object is equal to the minimum number of pairs it can hold.
*
* @return a boolean indicating whether or not the LeafNode object can
* be merged with
*/
public boolean isMergeable() {
return numPairs == minNumPairs;
}
/**
* Constructor
*
* @param m: order of B+ tree that is used to calculate maxNumPairs and
* minNumPairs
* @param dp: first dictionary pair insert into new node
*/
public LeafNode(int m, DictionaryPair dp) {
this.maxNumPairs = m - 1;
this.minNumPairs = (int) (Math.ceil(m / 2.0) - 1);
this.dictionary = new DictionaryPair[m];
this.numPairs = 0;
this.insert(dp);
}
/**
* Constructor
*
* @param dps: list of DictionaryPair objects to be immediately inserted
* into new LeafNode object
* @param m: order of B+ tree that is used to calculate maxNumPairs and
* minNumPairs
* @param parent: parent of newly created child LeafNode
*/
public LeafNode(int m, DictionaryPair[] dps, InternalNode parent) {
this.maxNumPairs = m - 1;
this.minNumPairs = (int) (Math.ceil(m / 2) - 1);
this.dictionary = dps;
this.numPairs = linearNullSearch(dps);
this.parent = parent;
}
}
/**
* This class represents a dictionary pair that is to be contained within the
* leaf nodes of the B+ tree. The class implements the Comparable interface
* so that the DictionaryPair objects can be sorted later on.
*/
public class DictionaryPair implements Comparable<DictionaryPair> {
int key;
double value;
/**
* Constructor
*
* @param key: the key of the key-value pair
* @param value: the value of the key-value pair
*/
public DictionaryPair(int key, double value) {
this.key = key;
this.value = value;
}
/**
* This is a method that allows comparisons to take place between
* DictionaryPair objects in order to sort them later on
*
* @param o
* @return
*/
@Override
public int compareTo(DictionaryPair o) {
if (key == o.key) {
return 0;
} else if (key > o.key) {
return 1;
} else {
return -1;
}
}
}
public static void main(String[] args) {
// Ensure correct number of arguments
if (args.length != 1) {
System.err.println("usage: java BPlusTree <file_name>");
System.exit(-1);
}
// Read from file
String fileName = args[0];
try {
// Prepare to read input file
File file = new File(System.getProperty("user.dir") + "/" + fileName);
Scanner sc = new Scanner(file);
// Create output file in which search results will be stored
FileWriter logger = new FileWriter("output_file.txt", false);
boolean firstLine = true;
// Create initial B+ tree
BPlusTree bpt = null;
// Perform an operation for each line in the input file
while (sc.hasNextLine()) {
String line = sc.nextLine().replace(" ", "");
String[] tokens = line.split("[(,)]");
switch (tokens[0]) {
// Initializes an m-order B+ tree
case "Initialize":
bpt = new BPlusTree(Integer.parseInt(tokens[1]));
break;
// Insert a dictionary pair into the B+ tree
case "Insert":
bpt.insert(Integer.parseInt(tokens[1]), Double.parseDouble(tokens[2]));
break;
// Delete a dictionary pair from the B+ tree
case "Delete":
bpt.delete(Integer.parseInt(tokens[1]));
break;
// Perform a search or search operation on the B+ tree
case "Search":
String result = "";
// Perform search (across a range) operation
if (tokens.length == 3) {
ArrayList<Double> values = bpt.search(
Integer.parseInt(tokens[1]),
Integer.parseInt(tokens[2]));
// Record search result as a String
if (values.size() != 0) {
for (double v : values) {
result += v + ", ";
}
result = result.substring(0, result.length() - 2);
} else {
result = "Null";
}
}
// Perform search operation
else {
/* Perform search for key, if resulting value is
null, then the key could not be found */
Double value = bpt.search(Integer.parseInt(tokens[1]));
result = (value == null) ? "Null" :
Double.toString(value);
}
// Output search result in .txt file
if (firstLine) {
logger.write(result);
firstLine = false;
} else {
logger.write("\n" + result);
}
logger.flush();
break;
default:
throw new IllegalArgumentException("\"" + tokens[0] +
"\"" + " is an unacceptable input.");
}
}
// Close output file
logger.close();
} catch (FileNotFoundException e) {
System.err.println(e);
} catch (IllegalArgumentException e) {
System.err.println(e);
} catch (IOException e) {
System.err.println(e);
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237